
Using ClickHouse Open Source
columnar database for satellite

communication data

1

Introduction
A real case project using

Clickhouse Open Source database

2

3

Eutelsat
Eutelsat is one of the most innovative operators in the commercial satellite
business.

Eutelsat Group offers capacity on 36 satellites in geostationary orbit that provide
premium coverage of Europe, Africa, the Middle East, Asia and the Americas. The
support team has over 1,000 industry professionals from 46 countries located at
offices and teleports around the world, ensuring the highest quality of service.

Eutelsat is using Clickhouse as a core database component for some of its most
recent projects.

4

Clickhouse

Clickhouse is an Open Source columnar database and is fast, very fast

Clickhouse is a great choice when You need an on-line analysis (OLAP) database

Let’s see why!

5

Clickhouse
Good reasons to start using Clickhouse:

● Apache 2 license
● Easy to install
● Scale well (from docker to hundreds of nodes in cluster)
● Good SQL (and growing better)
● MySQL like DCL
● Easy to integrate with external data sources
● Very, very fast on OLAP (near real time)

6

Clickhouse
Very, very fast:

● Column Storage
● Parallel execution
● Vectorized algorithms
● Delayed data merge

7

Clickhouse
Let’s create a table:

CREATE TABLE invoice (
 date DateTime,
 store UInt32,
 product String,
 customer String,
 price Float32,
 ...
)
ENGINE = MergeTree
PARTITION BY toYYYYMM(date)
ORDER BY (customer, date);

8

Clickhouse
Column-store is quite different from classic row-store

9

Satellite data
Clickhouse is a fast, very fast database designed for OLAP usage.

Clickhouse does not have / does not support: transactions, stored procedure/functions,
CRUD operations, optimizer, efficient joins, ...
Clickhouse is an analytical DBMS and has some limitations:
“we recommend expecting a maximum of 100 (short) queries per second”
“we recommend inserting data in packets of at least 1000 rows, or no more than a single
request per second”

Can Clickhouse be used for real case data collection project?
Yes... keep reading!

10

Satellite data
Satellite communication plays a key role in the global connectivity ecosystem,
connecting rural and remote populations. In many countries and for many
communities satellites are the only connectivity option.

Each satellite/platform is different, there are continuos upgrades, change requests, ...

Most important data are traffic (for billing!) and terminals state (to optimize
bandwidth).

11

A complex ecosystem...

12

A complex ecosystem...
Hughes satellite platform as data source (CSV)
Newtec Dialog satellite platform as data source (InfluxDB)
Legacy database (Oracle, MySQL) for historical data

Kafka messaging system as communication bus

Several external services in Cloud

Applications built with Microservices in Java

MySQL as transactional database

ClickHouse for all data ingestion and complex aggregations

13

Layered schema design

14

Layered schema design

15

RAW database receives data from the satellite platforms
CORE database contains only useful, checked, optimized data
AGGR database is used for data aggregation

Each application microservice, class of end users, ... has a dedicated database
Data moves thanks to Views and Materialized Views
Other databases, EXT, COMMON, ...

The layered design hides complexity, differences and some “optimizations
tricks” to upper levels

Layered schema design

16

Data ingestion

17

Data ingestion

18

CREATE TABLE accounting_kfk
(
 `Device_ID` String,
 `Actual_Gateway_ID` String,
 `IPGW_ID` String,
 `Last_Association_Time` String,
 `Collection_Date` String,
 `Collection_Start_Time` String,
 `Collection_End_Time` String,
 `Minutes_Used` String,
... more than 150 fields ...
)
ENGINE = Kafka()
SETTINGS kafka_broker_list = '{kafka_cluster}',
kafka_topic_list = 'xxx', kafka_group_name =
'{replica}_xxx', kafka_format = 'CSV', ...

Data ingestion

19

CREATE MATERIALIZED VIEW accounting_mv
 TO accounting_tab
(
 `Device_ID` String,
 `Actual_Gateway_ID` String,
 `IPGW_ID` String,
...
) AS
SELECT
 _timestamp AS timestamp_k,
 now() AS timestamp_ch,
 Device_ID,
 Actual_Gateway_ID,
 IPGW_ID,
...
FROM accounting_kfk;

CREATE TABLE accounting_tab
(
 `Device_ID` String,
 `Actual_Gateway_ID` String,
 `IPGW_ID` String,
 `Last_Association_Time` String,
 `Collection_Date` String,
...
)
ENGINE = MergeTree
...

Optimizations

20

Partitioning, ordering/indexing:

CREATE TABLE aggr.traffic_1h_tab (
 timestamp DateTime,
 external_id Int32,
 duration UInt16,
 hub LowCardinality(String),
 fwc_volume UInt64,
 rtc_volume UInt64
) Engine = MergeTree
PARTITION BY toYYYYMM(timestamp)
ORDER BY (external_id, timestamp);

Optimizations

21

Clickhouse has several features tipical of a Time Series Database: TTL

CREATE TABLE traffic_tab
(
 `timestamp` DateTime,
 `external_id` String,
 `source_id` LowCardinality(String) DEFAULT 'KONNECT',
 `rtc_volume` UInt64,
 `fwc_volume` UInt64
)
ENGINE = MergeTree
PARTITION BY toYYYYMM(timestamp)
ORDER BY (external_id, timestamp)
TTL timestamp + toIntervalMonth(6) TO DISK 'slow',
 timestamp + toIntervalMonth(61) DELETE
SETTINGS ttl_only_drop_parts = 1;

Optimizations

22

Compression (default LZ4) and codec:

CREATE TABLE aggr.traffic_1h_tab (
 time_ref DateTime Codec(Delta, ZSTD),
 external_id Int32,
 duration Float64 Codec(Gorilla, ZSTD),
 hub LowCardinality(String),
 fwc_volume UInt64 Codec(T64, ZSTD(22)),
 rtc_volume UInt64 Codec(T64, LZ4)
) Engine = MergeTree
PARTITION BY toYYYYMM(time_ref)
ORDER BY (external_id, time_ref);

Optimizations

23

Materialized Views are a distinguishing feature of ClickHouse.

Materialized Views are implemented as an insert trigger on the
source table. The MV conditions are applied only to the batch of
freshly inserted data.

The can used to collect data from Kafka, to move data to a
differently optimized table, to aggregate data, to implement “last
point queries”, ...

Optimizations

24

Materialized Views: creating the base table

CREATE TABLE last_coordinate_tab
(
 terminal_id String,
 timestamp_max AggregateFunction(max, DateTime),
 latitude AggregateFunction(argMax,Float32, DateTime),
 longitude AggregateFunction(argMax,Float32, DateTime)
)
ENGINE = AggregatingMergeTree()
PARTITION BY tuple()
ORDER BY terminal_id;

Optimizations

25

Materialized Views: populating the base table with the MV

CREATE MATERIALIZED VIEW last_coordinate_mv
 TO last_coordinate_tab AS
SELECT terminal_id
 ,maxState(timestamp) AS timestamp_max
 ,argMaxState(latitude, timestamp) as latitude
 ,argMaxState(longitude, timestamp) as longitude
 FROM geolocation_tab
 GROUP by terminal_id;

Optimizations

26

Materialized Views: querying the base table with a view

CREATE VIEW last_coordinate AS
SELECT terminal_id
 ,maxMerge(timestamp_max) as timestamp
 ,argMaxMerge(latitude) as latitude
 ,argMaxMerge(longitude) as longitude
 FROM last_coordinate_tab
 GROUP BY terminal_id;

Optimizations

27

Dictionaries, PREWHERE:

SELECT timestamp, external_id,
 dictGet('get_account', 'account_id', external_id) AS account,
...
 FROM traffic_tab
 PREWHERE timestamp > now() - INTERVAL 7 day
 WHERE ...

HA

28

HA

29

Replica:

CREATE TABLE alarm_clock
(
 `timestamp` DateTime,
 `source_id` LowCardinality(String),
 `type` LowCardinality(String) DEFAULT 'TRAFFIC'
)
ENGINE = ReplicatedMergeTree('/clickhouse/{cluster}/tables/{shard}/alarm_clock', '{replica}')
PARTITION BY toYYYYMM(timestamp)
ORDER BY (source_id, timestamp);

Scalability

30

/etc
Some numbers:

● Metrics / Kafka topics: 50
● Source data #fields: 600
● Tables: 450
● Columns: 6000
● Upper level views: 100
● Day merges: 1 TB
● Data: 7 TB
● Biggest table: 0.5 TB
● QPS: 100
● Version: 20.4

31

Some results:
● More frequent data collection
● Much more metrics
● Less time to production
● Very, very fast on analytic

queries
● Cost savings

Analytics
The presentation focus was on Clickhouse Open Source database...

But let’s present a couple of examples on why analytics is important!

32

What happened after installing CH v.19.11.3.11 ?

33

select toStartOfFiveMinute(timestamp), sum(fwc_volume)
 from traffic
 group by toStartOfFiveMinute(timestamp)
 order by toStartOfFiveMinute(timestamp) desc
 limit 20;

┌─toStartOfFiveMinute(time_ref)─┬─sum(fwc_volume)─┐
│ 2019-08-11 21:30:00 │ 4955854184 │
│ 2019-08-11 21:25:00 │ 329491077829 │
│ 2019-08-11 21:20:00 │ 160244921732 │
│ 2019-08-11 21:15:00 │ 341716444958 │
│ 2019-08-11 21:10:00 │ 175404086307 │
│ 2019-08-11 21:05:00 │ 333417505956 │

34

What happened ...

35

Problem... fixed!

Is the performance problem solved?

We found some slow queries and we optimized with a PREWHERE
clause...

36

37

Yes: the problem is... fixed!

Analytics

A wise graphical data presentation can be immediately understood by
some the oldest Deep Learning tools we have: our eyes and our brain!

38

Thank You!

39

mail [AT] meo.bogliolo.name

40

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Thank You!
	Slide 40

